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Abstract—This paper describes one vision for future earth ob-series, provided significant global data on sea-ice coegrag
serving systems. New in this vision is the desire for synibiot atmospheric temperature, atmospheric chemistry (i.en@zo
communication to dynamically guide an earth observatiordistribution), the Earth’s radiation budget, and seaauef
system. An earth observation system which is not just asingltemperature.

satellite acting on its own but a constellation of satedlitend

sub-orbital platforms such as unmanned aerial vehicles, anWhat will the earth observing systems of the future look?ike
ground observations interacting with computer systemd useAutonomy is likely to be a key feature.

for modeling, data analysis and dynamic observation guid-

ance. An autonomous Objectively Optimized Observation 2. AUTOMATION ON MANY LEVELS

D|rect|_on System (QOODS) is of great utility for earth ob- It is very likely that the observing systems of the futurel wil
servation. In particular, to have a fleet of smart assetsctrat

. . . in&reasingly involve the integration of models and data as-
be reconfigured based on the changing needs of science and .., h : .
: : . _“similation systems. Automation will be of great value intbot
technology. The OOODS integrates a modeling and assimiz_~ =~ . .
: o . the direction of observations and for many parts of the asso-
lation system within the sensor web allowing the autonomous. o .
: ._.Ciated software systems, especially if the observing aatt an
scheduling of the chosen assets and the autonomous PIOVISIO . "\ ctems are to be dvnamically reconfiqurable
of analyses to users. The OOODS operates on generic pri|¥- Y y y 9 '
ciples that could easily be used in configurations other that}\
the specific examples described here. Metrics of what we do
not know (state vector uncertainty) are used to define wha# prime area for the application of automation is in the au-
we need to measure and the required mode, time and locatia@anomous direction of observations. However, to include au
of the observations, i.e. to define in real time the observingonomy, objective metrics to direct the system are required
system targets. Metrics of how important it is to know this |t is desirable if generic classes of metrics could be used so
information (information content) are used to assign arprio that the approach could be easily applied to many different
ity to each observation. The metrics are passed in real timareas of earth observation. For example, an autonomous Ob-
to the sensor web observation scheduler to implement the olfectively Optimized Observation Direction System (OOODS)
servation plan for the next observing cycle. The same systeroould use two specific metrics to perform the optimizatian fo
could also be used to reduce the cost and development timeegiven sensor web capability. Firstly, metrics of what we do
in an Observation Sensitivity Simulation Experiment (O$SE not know (state vector uncertainty) can be used to define what
mode for the optimum development of the next generation ofve need to measure and the required mode (i.e. global sur-
space and ground-based observing systems. vey, rapid scan, step-and-stare or zoom in), and the time and
location of the observations, i.e. to define in real time the
observing system targets. The state vector uncertaintyis p

vided by the integrated data assimilation system. Secondly

utonomous Observation Direction Systems
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These two metrics are then passed in real time to the smart
1. INTRODUCTION sensor web observation scheduler that is aware of eaclsasset

2004 was the fortieth anniversary of the NASA Nimbus pro-OPServing capabilities to implement the observation ptan f
gram. The Nimbus satellites, first launched in 1964, camied the next observing cycle. The sensor web will typically in-
number of instruments: microwave radiometers, atmospheriv0IVe @ suite of orbital, sub-orbital, aerial and groundesas
sounders, ozone mappers, the Coastal Zone Color ScanrféfSets: The optimum observation schedule information will

(CZCS), infrared radiometers, etc. Nimbus-7, the last & th depend on the asset. For a satellite instrument it will ibjc
include, pointing information, viewing mode, and micro win

dow selection for every part of the next observation cycte. F

0-7803-7231-X/01/$10.08f 2006 iece unmanned aerial vehicles or aircraft missions it would be an
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optimal flight plan (i.e. time and route). For balloon lauash grid points and on successive days, so similar calculatioss

it would be optimal launch time and location. repeated many thousands of times. This is the type of appli-
cation that benefits from adaptive, error monitored, maghin

As an aside, it is worth noting that the same system could alskearning technology. Our ODE solver already employs adap-

be used to reduce the cost and development time in an Obsdive time stepping with error monitoring, if this is exteride

vation Sensitivity Simulation Experiment (OSSE) mode forto an adaptive use of machine learning then there are liter-

the optimum development of the next generation of space anally massive potential savings in computational expense. A

ground-based observing systems. prototype code has been developed that we would like to ex-
tend here for use within the ODE solver. Early work seems
Automatic Code Generation promising that such an approach would work [4], [5]. A

If the observing svstem is to be dvnamically reconfiaurable j SYCCESS in this area would mean a dramatic reduction in the
gsy y y 9 computational cost of assimilation and hence of the entire d

is of great use if a high level of automatic code generation isnamic data retrieval control system
used in the creation of the model and assimilation systetn tha '
WI" be pro_wdmg the objective measures used by the OOOD%ther Areas of Automation
just described above.

Automatic parallelization will greatly facilitate the g
An example of a fully automated code generation and docmentation and automatic adaption of the system for differen
umentation system that provides this information for atmo-problems and its possible use on a variety of hardware. Auto-
spheric chemistry is NASA's AutoChem automatic code gen-smatic documentation of both software and data productk faci
eration (e.g. www. Aut oChem i nfo). AutoChem is an auto- itate both code maintenance, and the production and quality
matic code generator and documentor for atmospheric chenmonitoring of self-consistent analyses. The use of autmmat
istry modeling and assimilation [2], [3]. Given a set of re- compression can minimize both the required cost of storage
action databases and a user supplied list of required speciand dissemination, and the required time for electronidpro
it will automatically select the reactions involving thasen-  uct transfer/download.
stituents. It then constructs the ordinary differential&tipn
(ODE) time derivatives, symbolically differentiates theé 3. RELEVANCY SCENARIOS

derivatives to give the Jacobian, and symbolically diffetre . . . .
We consider two relevancy scenarios, one for immediate ap-

ates the Jacobian to give the Hessian and the adjoint. It alsqication and the other for future systems currently being
documents the whole process in a set of LaTeX and PDF file : '

. : : esigned. However, before considering these scenaries it i
In addition, a huge humber of observations of many differen . :
. . . worth noting that GOES-R and all planned geostationary plat
constituents from a host of platforms are available frors thi ;
o ! X . forms of other agencies such as Eumetsat and NASDA have
site in an atmospheric chemistry observational database.

an optional rapid scan mode. This enables the assets to scan
£ limited region (e.g. of a 1000 km x 1000 km) every minute

AutoChem typically creates in less than a second the mo ; . : )
eling and assimilation system that would take approximyatel i _requ|red_. Knowing when best to use this rapid scan mode
will be an issue for all these platforms. The methodology de-

a man year to write by hand. Once the model and assimila-_ . ; .
. . scribed here could help autonomously answer this question.
tion system has been run AutoChem also automatically cre-
ates a cross linked web site for analysis and data mining (e.
www. CDACent ral . i nf o). The automatic creation of web sites
for data mining of the analyses greatly facilitates therscie A practical issue that faces the ongoing long-term NASA
tific analysis needed to understand and answer major scierura validation effort is deciding the optimum validatioalb
tific questions, and can be used by policy makers to establisloon launch times. The OOODS described here can ingest
sound policy decisions, thus increasing the accessilgility  the suite of observations made by NASA Aura and other plat-
utility of Earth Science data. forms and produce assimilated constituent analyses. ate st
vector uncertainty of the analyses will then be used to define
AutoChem is being used in the validation and anal-target regions of large uncertainty. The relative prioofy
ysis of results from the NASA Aura platform (e.g. the different target regions will then be determined ushmey t

%urrent Scenario

aur a. gsf c. nasa. gov). information content fields derived from the assimilatedlana
yses. Then by considering the Aura overpasses in the next 24
Machine Learning hours the best launch times and locations will be determined

The whole approach described depends in large part on tr]ltew'” then automatically send a set of emails to the balloon

: . S ... _launch teams at these sites giving optimum launch times. It
integration of a data assimilation system. When considerin . . . .
L . . could also provide optimal flight plans for any UAV and air-

data assimilation of atmospheric chemistry, one of the com- o X . S
. . : 0 . craft missions involved in the validation.

putationally most expensive tasks is the time integratioa o

large and stiff set of ordinary differential equations (Gi)E

However, very similar sets of ODEs are solved at adjacent



Future Scenario

system for air quality are currently being discussed by NAS

and NOAA. Key issues for this observing system will be what

are the spatial scales on which observations are requiteat, w

development time in an Observation Sensitivity Simulation

. Experiment (OSSE) mode for the optimum development of

fhe next generation of space and ground-based observing sys
ems.

More details can also be found in the invited Royal Society

are the most important constituents to observe and how do
this change spatially and temporally, what are the optimum
observation times for each constituent, and when should in-
strument zoom in, step and stare, rapid scan or global survey

Ision article [6].
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utility in autonomously addressing all of these issueshis t
scenario, there is a daily OOODS cycle. As in the scenario
above, the OOODS will ingest the full suite of relevant senso
web observations made by NASA and other platforms ob-
serving constituents, aerosols, surface reflectivity doddc  [1]
properties. These will be used to produce assimilated con-
stituent analyses. The state vector uncertainty of theyaasl

will then be used to define target regions of large uncestaint
The relative priority of the different target regions witien

be determined using the information content fields deriveciz
from the assimilated analyses. The metrics are then passe
in real time to the system observation scheduler. The sched-
uler will then be able to do the following tasks. Upload to the
satellite instruments involved their observing mode, fio@q
information, and (if required) micro window selections for (3]
the next 24 hours. Dispatch the flight plans to any unmanned
aerial vehicles involved. Send emails to sonde and balloon
launch teams giving optimum launch times.

The OOODS components and simulator just described woul{#]
also be of use in the context of Observation Sensitivity Simu
lation Experiments (OSSE). A NASA OSSE capability is cur-
rently being developed by the NASA Research and Analysi 5]
program to determine the optimum configuration of the nex
generation of space and ground-based observing systems.

4. CONCLUSION 6]
A vision for future earth observing systems has been de-
scribed where there is symbiotic communication to dynam-
ically guide an earth observation system. Where the earth ob
serving system is a constellation of satellites, and stitadr
platforms such as unmanned aerial vehicles, and ground ob-
servations interacting with computer systems used for mod-
eling, data analysis and dynamic observation guidance. The
earth observing system includes an autonomous Objectively
Optimized Observation Direction System that use metrics of
what we do not know (state vector uncertainty) to define what
we need to measure, and metrics of how important it is to}
know this information (information content) to assign a pri
ority to each observation. The metrics are passed in real tim
to the sensor web observation scheduler to implement the ob
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